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Abstract.—Effective habitat and species monitoring programs require robust and repeatable estimates derived from 
standardized protocols.  Hellbenders (Cryptobranchus alleganiensis) are large, long-lived salamanders endemic to 
highland streams in central and eastern North America.  Based on historical data, it is apparent that Hellbender 
populations are undergoing significant, wide-spread declines; however, the ability of researchers to detect declines 
is limited because there has been little effort to standardize surveys and virtually no quantitative habitat data 
are collected during surveys.  Here, we assess the efficacy of a spatially constrained transect-based method to 
capture Hellbenders and describe habitat conditions among years.  We compared results to conventional snorkel/
rock-turning surveys and tested the consistency of habitat parameters using intra-class correlations.  Although 
the differences were not statistically significant, spatially constrained surveys captured 25% more animals and 
produced relative abundance estimates that were 107% higher than unstandardized surveys.  By constraining 
surveys and carefully recording effort, we ensured technicians would search study reaches more effectively and 
find Hellbenders in habitats that may have been overlooked by unconstrained surveys.  Intra-class correlations 
demonstrated that some physical habitat conditions remained consistent between years whereas others were much 
more variable reflecting the year-to-year variability inherent to stream ecosystems.  By constraining Hellbender 
surveys in time and space, researchers can provide more informative estimates of abundance and habitat suitability 
that will improve the ability of monitoring programs to detect changes in the range and population sizes of these 
large but cryptic aquatic salamanders.
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Introduction 

Monitoring trends in wild populations coupled 
with rigorous habitat assessment are fundamental to 
conservation biology (Yoccoz et al. 2001).  Nonetheless, 
because protocols are frequently not standardized, many 
stakeholders (i.e., state and federal agencies, private 
land-owners, academics) produce data that are not 
easily comparable and thus may not accurately represent 
population trends or properly document the influences 
of habitat on detectability and site occupancy (Rödel 
and Ernst 2004).  This presents a significant obstacle for 
stakeholders who are responsible for making informed 
management decisions that are potentially biased by 
results of unstandardized surveys that may not accurately 
quantify abundance or occupancy.  Moreover, although 
detection of species declines is often the priority of 
monitoring programs, the underlying causes of species 
decline such as habitat degradation are often of greater 
interest, yet few researchers use quantitative methods to 
assess local habitat conditions.  Therefore, it is important 
to standardize both survey efforts and evaluation of local 

habitat particularly for species in decline or of special 
concern (Brower and Zar 1998). 

Hellbenders (Cryptobranchus alleganiensis; Fig. 1) 
are large (maximum total length about 74 cm) aquatic 
salamanders endemic to mountain and upland streams 
in eastern and central USA (Nickerson and Mays 1973; 
Petranka 1998).  Hellbenders exhibit cryptic coloration 
and occupy cavities under large rocks in cool fast-
flowing streams (Smith 1907; Hillis and Bellis 1971; 
Nickerson and Mays 1973; Nickerson and Krysko 2003).  
In recent decades numerous researchers have reported 
rapid, widespread declines in Hellbender populations 
(Mayasich et al. 2003; Briggler et al. 2007; Foster et al. 
2009; Burgmeier et al. 2011; Pitt et al. 2017).  Plausible 
causes of these declines include habitat degradation due 
to pollution and land-use change (Wheeler et al. 2003; 
Quinn et al. 2013; Pugh et al. 2016; Pitt et al. 2017) over-
exploitation (Nickerson and Briggler 2007), needless 
killing (Reimer et al. 2013), and pathogens including 
Ranavirus and Batrachochytrium dendrobatidis 
(Bodinof et al. 2011; Souza et al. 2012; Williams and 
Groves 2014).
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Recent efforts to understand and mediate Hellbender 
decline have primarily involved disease testing, 
captive breeding, deploying artificial nest rocks, and 
population monitoring (Briggler et al. 2007).  Although 
state wildlife agencies conduct regular monitoring of 
Hellbender populations, to date there is no established 
standardized protocol that incorporates quantification of 
Hellbender abundance and physical habitat parameters.  
This is surprising considering there are several proposed 
methods for fishes (Dauwalter et al. 2003; Meador et 
al. 2003; McCluskey and Lewison 2008), mussels 
(Huang et al. 2011; Hart et al. 2016), and other aquatic 
salamanders (Crawford and Semlitsch 2007; Greene 
et al. 2008) that occupy similar, or often, the same 
habitats.  Because an understanding of the influences 
of local habitat on Hellbender populations is often a 
significant component of questions related to Hellbender 
management, a lack of standardized and quantitative 
habitat data is an impediment to investigation of range-
wide trends in Hellbender populations.  Adoption of 
a standardized protocol may improve the ability for 
range-wide comparison of data and population trends in 
Hellbender populations particularly in the many cases 
where neighboring states share parts of the same river 
drainage.

Herein we describe a spatially constrained sampling 
protocol to inventory Hellbender populations and a 
protocol to quantify habitat parameters (Pugh et al. 2013, 
2016; Franklin 2016).  We describe our methodology 
and compare number of captures using this standardized 
method with unstandardized conventional timed-search 
surveys.  We also examine the consistency of our 
habitat characterization method between field seasons. 
We predicted that our transect survey would increase 
Hellbender captures and estimates of Hellbender 
abundance and that our habitat characterization would 
produce consistent results among field seasons.

Materials and Methods

Hellbender surveys.—We conducted Hellbender 
surveys at 20 sites in the Watauga River Drainage in 
northwestern North Carolina and eastern Tennessee, 
USA, during 2011 and 2012 using a conventional timed 
search in 2011 and a transect-based method in 2012.  We 
conducted all surveys from May to August and ceased 
surveys in September due to the start of the breeding 
season.  We compared number of captures and estimates 
of relative abundance of Hellbenders at sites where we 
detected Hellbenders one or both years (2011 and 2012).  
Sites consisted of a 150-m stream reach divided by cross-
channel transects at 10-m intervals (n = 16 per site).  
We then surveyed study reaches one section at a time 
and we recorded the total effort expended within each 
section.  Prior experience in these watersheds indicates 
that a 150-m search area is large enough to contain at 
least one or two Hellbenders, and in some cases, a 150-
m reach may contain as many as 20 individuals (Pugh 
et al. 2016). 

After delineating transects, we conducted either a 
conventional timed search (2011) or a transect survey 
(2012).  We searched for Hellbenders by turning 
medium- to large-sized cobbles and boulders by hand 
or using log peaveys (Nickerson and Krysko 2003).  We 
located Hellbenders by feeling underneath cover rocks 
with our hands or visually detecting them when water 
clarity under the rock allowed.  Additionally, we would 
occasionally encounter Hellbenders in bedrock seams or 
moving across the substrate.  We captured Hellbenders 
by hand or allowed them to swim into dip-nets set 
immediately downstream of cover rocks.  Survey teams 
consisted of a minimum of three persons (two snorkelers 
and one rock lifter) and up to 12 technicians at a time.  
Although in larger streams more searchers would be 
appropriate, our sites were located in headwater regions 
and the search area could become unacceptably crowded 
if we exceeded this number potentially skewing our 
estimates of abundance.  The number we felt was most 
convenient was six technicians where four conduct the 
survey and two are available to process animals (i.e., 
collect body condition data).  After processing, we 
always returned Hellbenders to their site of capture and 
released them in front of their cover rock marked with 
flagging tape tied to small metal washers.

During conventional timed searches, we attempted to 
search the entire 150-m reach using a single, continuous 
search effort.  If we had multiple captures, we would 
stop time to process animals and resume time once 
the animals were released.  In contrast, during transect 
surveys, we sampled the study reach by searching each 
10-m section between transects (n = 15) as a discrete 
unit.  One technician supervised those searching to 
make sure that they remained in focal transects and 

Figure 1. An adult Hellbender (Cryptobranchus alleganiensis) 
captured at one of the study sites in the Watauga River Drainage 
in northwestern North Carolina and eastern Tennessee, USA. 
(Photographed by M. Worth Pugh).
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that all available habitats were surveyed (Fig. 2).  
After each transect, we would stop and record search 
time, number of Hellbenders captured, and number of 
snorkelers before moving on to the next transect.  For 
both survey methods we estimated Hellbender relative 
abundance as catch per unit effort (CPUE) by dividing 
the number of Hellbenders encountered at a site by 
the number of snorkeling technician search hours.  
Although Hellbenders occasionally evade capture, 
experienced and well-trained field teams rarely fail to 
capture detected Hellbenders (Franklin 2016).

Habitat characterization.—We conducted habitat 
characterization protocols at 20 sites in the Watauga 
River drainage in 2011 and 2012 and at 10 sites in the New 
River Drainage in 2014 and 2015 and compared habitat 
assessments within each drainage between sampling 
years.  We sampled all sites during May-August and 
we did not sample during periods of high flow to avoid 
biasing flow, depth, and width measurements of streams.  
At each transect we measured the wetted channel width 
of the stream using a meter tape.  Along each transect 
we measured stream depth and current velocity at five 
equidistant points.  We sampled stream substrate by 
walking along each transect and randomly selecting 
25 substrate particles from the front of our shoes every 
one to two steps or more depending on the width of the 
stream (Wolman 1954).  We measured the maximum 
diameters of all lithic particles > 2 mm and classified 
particles > 2 m as boulders.  We also classified fine 
substrates and organic particles as bedrock, silt, sand, 
organic matter (i.e., leaf pack and aquatic macrophytes) 
or woody debris.  We calculated percentages of non-
measurable substrates as the portion of samples in a 
non-measurable substrate category divided by the total 
number of samples taken (n = 400 per site).  We used 

habitat data to compute mean wetted width, current 
velocity, depth, percentage non-measurable substrate 
parameters as well as mean and median particle size.  
We added percentage of silt and sand together to obtain 
an estimate of the proportion of fine substrates present 
in a site. 

Statistical analysis.—We compared the total number 
of captures and CPUE of Hellbenders from occupied 
sites in the Watauga River Drainage sampled during 
2011 (conventional timed-search surveys) and 2012 
(transect surveys) using a paired Wilcoxon Signed 
Rank Test (α = 0.05).  We used intra-class correlations 
(ICCs) to examine consistency of habitat parameters 
between sampling years in the Watauga River Drainage 
(2011–2012) and New River Drainage (2014–2015).  
We separated habitat parameters by year and ICCs were 
run independently for each parameter and compared 
using ANOVA (α = 0.05).  Most habitat data were not 
normally distributed (Shapiro-Wilkes P < 0.05), so we 
transformed data using a Log10 (n + 1) transformation 
prior to analyses to normalize data (Shapiro-Wilkes P > 
0.05).  Because many of our study streams lacked woody 
debris and boulders, we removed percentage woody 
debris from the Watauga Drainage sites and percentage 
boulder from New Drainage sites prior to analysis 
because including all these missing data points in our 
analyses produced highly skewed relationships that were 
unreliable.  In both instances excluded substrate types 
comprised < 5% of all substrate measurements made 
across all sites and years.  We conducted all analyses in 
SPSS 24.0 (SPSS Inc., Chicago, Illinois, USA).

Results

We detected Hellbenders at six sites in 2011 and 
2012 in the Watauga River drainage.  At 66% of sites, 
we found more Hellbenders using the transect survey 
method than we had the previous year using the 
conventional timed-search method.  Hellbender capture 
rates increased by 25% across all sites using the transect 
method (Fig. 3).  This increase included a new detection 
at one site; however, most of the additional captures 
occurred at one densely populated site that produced 13 
captures in 2011 (conventional timed-search method) 
and 20 captures in 2012 (transect method).  From 2011 
to 2012, our estimates of Hellbender abundance (CPUE) 
increased at 83% of sites using the transect method 
including one site that produced greater CPUE despite 
the fact we found fewer Hellbenders in our 2012 survey 
(Site 5).  Additionally, there was a 107% increase in 
mean CPUE across sites between conventional timed 
surveys and the transect method (Fig. 4), but differences 
were not significant (n = 6; Z = ˗1.363; P = 0.172). 

Figure 2. Field technicians conducting a Hellbender 
(Cryptobranchus alleganiensis) survey using the transect method.  
Transects are laid every 10 m and the area between two transects 
were searched independently.  (Photographed by Jason Selong).
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Intra-class correlations demonstrated high 
consistency in stream depth and width measurements 
in the Watauga Drainage; however, most other habitat 
parameters were not significantly associated between 
years (Table 1; Fig. 5).  Two habitat parameters, mean 
and median substrate size, were somewhat repeatable 
(intra-class coefficients > 0.50) between surveys, 
although this trend was also not statistically significant 
(Table 1).  In the New Drainage, intra-class correlations 
revealed that measurements of stream depth, velocity, 
width, percentage bedrock, percentage organic 
substrates, and percentage fine substrates were highly 
consistent between surveys (Table 1; Fig. 6).

Discussion

The survey and habitat assessment methods outlined 
here have the potential to be useful to researchers 
interested in obtaining standardized, repeatable, 
and statistically informative Hellbender abundance 
estimates as well as quantitative habitat datasets that 
appear sensitive to annual (and likely long-term) habitat 
variability.  There are numerous reasons why researchers 
and agencies working to conserve Hellbenders should 
begin to employ some level of standardization during 
surveys as many researchers and agencies have for other 
sensitive aquatic fauna (Dauwalter et al. 2003; Meador 
et al. 2003; Crawford and Semlitsch 2007; Huang et 
al. 2011; Hart et al. 2016).  First, because standardized 
surveys may detect more Hellbenders on average 
compared to unconstrained surveys, they may simply 
yield more reliable and repeatable population estimates 
that are comparable across populations making such 
methods ideal for interpreting range-wide population 
trends.  Focused surveys that yield precise estimates 

of population size will be needed to track future trends 
in Hellbender abundance and can be useful even when 
animals are not detected as they provide some context 
for the amount of habitat searched.  Additionally, 
because Hellbenders exhibit site fidelity, it should 
also be possible to adapt this methodology to simplify 
mark and recapture surveys.  Finally, the protocol that 
we developed incorporates a method for quantifying 
habitat conditions that is sensitive to site to site and 
year to year variability.  Without reliable and repeatable 

Figure 3. Comparison of Hellbender (Cryptobranchus 
alleganiensis) captures from the Watauga River using the 
conventional timed survey (2011) and transect methods (2012). 
Total number of Hellbender captures increased 25% using the 
transect method versus the conventional timed survey. At Sites 
2 and 4 we found one Hellbender using the conventional timed-
search method and two using the transect method making the trend 
lines overlap completely. 

Figure 4. Comparison of Hellbender (Cryptobranchus 
alleganiensis) catch per unit effort (CPUE) using the conventional 
timed survey (2011) versus the transect method (2012). We 
calculated CPUE as the number of Hellbender captures divided by 
the number of person search hours.

Table 1. Intra-class correlations for habitat parameters collected 
in the Watauga Drainage (2011–2012) and New Drainage (2014–
2015).  Higher intra-class correlations (ICCs) represent greater 
consistency between field seasons.  F and P values represent result 
from comparison using ANOVA.  Parameters marked with an 
asterisk (*) represent a statistically significant ICC. 

Drainage Parameter ICC F P

Watauga Log Depth 0.79* 4.72 0.001

Log Velocity ˗0.55 0.65 0.824

Log Mean Substrate Size 0.51 2.05 0.063

Log Median Substrate Size 0.50 2.01 0.068

Log Mean Width 0.97* 36.1 < 0.001

Log % Bedrock ˗0.19 0.84 0.643

Log % Organic Substrates 0.35 0.74 0.714

Log % Boulder ˗0.11 0.90 0.570

Log % Fine Substrates ˗0.40 0.72 0.722

New Log Depth 0.92* 12.9 < 0.001

Log Velocity ˗0.32 0.76 0.657

Log Mean Substrate Size ˗0.07 0.94 0.539

Log Median Substrate Size 0.08 1.09 0.449

Log Mean Width 0.97* 32.7 < 0.001

Log % Wood 0.42 1.72 0.217

Log % Bedrock 0.94* 15.8 < 0.001

Log % Organic Substrates 0.88* 8.43 0.003

 Log % Fine Substrates 0.89* 8.72 0.002
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estimates of Hellbender detectability combined with 
physical habitat conditions, the links between changes 
in habitat conditions and Hellbender populations will 
likely remain largely speculative (Maddock 1999; 
Briggler et al. 2007; Pugh et al. 2016; Pitt et al. 2017).  
Although many researchers collect qualitative habitat 
data (i.e., visually estimating substrate composition or 
describing local land-use conditions), these data are 
essentially unrepeatable and have limited power in 
statistical analyses.  By spending a small amount of 
extra time (e.g., about 1-2 h per site), researchers can 
implement quantitative habitat assessment protocols at 
Hellbender monitoring sites that will provide baseline 
data to assess the effect(s) of subsequent habitat changes 
on the population dynamics of Hellbenders.  For these 
reasons, we strongly encourage state and federal 
agencies to adopt standardized methods to understand 
local and range-wide population dynamics and habitat 
associations of these unique aquatic salamanders.

The transect method yielded more Hellbender 
captures and greater CPUE compared to the conventional 
(2011) survey method.  Moreover, using the transect 
method, we increased Hellbender captures at 66% of 
sites and increased CPUE at 83% of sites in comparison 
to surveys using the conventional timed-search method.  
Although this trend aligned with our hypothesis that the 
transect method would increase total captures and CPUE 
at occupied Hellbender sites, the observed increase in 
these metrics was not statistically significant.  The lack 

of significant differences may have been due, in part, 
to our relatively small sample size (n = 6) and because 
the most dramatic increase in Hellbender captures and 
CPUE was observed at one densely populated site.  
This suggests that, by restricting search effort, we were 
less likely to overlook Hellbender cover rocks in each 
section.  At another densely populated site, the number 
of total Hellbender captures decreased between 2011 
and 2012 but overall CPUE increased.  At sites with few 
Hellbender encounters (three or fewer), we also saw 
increases in Hellbender captures and CPUE at all but 
one site indicating that, perhaps, focusing search effort 
in discrete segments of habitat improves efficiency 
at low-density sites as well.  Curiously, despite little 
variation in the number of Hellbender captures at sites 
between methods, CPUE increased at 83% of sites 
using the transect method suggesting that it improves 
survey efficiency at both low and high-density sites in 
comparison with the conventional timed-search method.

Researchers often use transects or quadrats in stream 
faunal surveys to standardize search area and increase 
the efficiency of survey efforts (Surber 1937; Cao et al. 
2007; Crawford and Semlitsch 2007; Hart et al. 2016).  
Although incorporating transects may be beneficial 
to some study designs, transects may underestimate 
species diversity (compared with conventional timed 
searches) because they frequently, and by design, sub-
sample populations from smaller areas (Samoilys and 
Carlos 2000; Smith 2006; Kadlec et al. 2012).  Observed 

Figure 5. Comparison of physical habitat parameters in the Watauga River Drainage between 2011 and 2012 field seasons.  Boxes 
represent 25th and 75th percentiles and error bars represent 90th percentiles.
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increases in capture rates and abundance estimates using 
our method are likely attributable to the fact that our 
transects encompassed the entire study reach and were 
not a sub-set as is typical with Surber or other quadrat-
based sampling methods (Anderson et al. 1979).  There 
is little investigation of the effectiveness of conventional 
timed searches versus transect methods where there is a 
single target species (Hart et al. 2016). 

There is a possibility that Hellbenders migrated into 
study reaches between years; however, studies have 
shown that while Hellbenders move frequently, their 
home-ranges are usually small (Burgmeier et al. 2011) 
and there is little gene flow between meta-populations 
within river drainages (Unger et al. 2013).  We also 
observed differences in some habitat parameters 
between years that might have influenced the number 
of captures and CPUE.  Moreover, other factors (i.e., 
temperature, rainfall, poaching, etc.) that are variable 
among years may have influenced yields of our surveys.  
To compensate for this variability, we attempted to 
minimize year effects by using similar numbers of 
technicians, predominantly the same technicians, and 
we surveyed during the same time of year and under 
similar water clarity conditions (i.e., we did not conduct 
surveys in murky water).

Our analyses demonstrate that some habitat 
measurements (e.g., wetted width, depth) remain 
relatively consistent from year to year whereas others 

(e.g., substrate composition, current velocity) do not.  
Mountain streams are dynamic ecosystems and their 
physical habitat parameters are highly variable from 
year to year.  Although this variability may potentially 
bias stream habitat measurements if comparisons are 
made without accounting for season or flow level (Poole 
et al. 1997), prior work using this method detected 
variation in habitat conditions that were associated with 
variability in Hellbender occupancy (Pugh et al. 2016).  
Moreover, although intra-class correlations revealed 
that measurements of some parameters between years 
were unrelated, we found substantial overlap of the 90% 
confidence intervals between years at most sites.  This 
suggests that, although stream habitats are variable from 
year to year, this method may detect short-term (i.e., year 
to year) changes to physical habitat potentially resulting 
from droughts, changes to channel morphology, or 
increased inputs of fine substrates associated with land 
use change.

Although unstandardized, conventional timed 
searches may be valuable in previously un-surveyed 
streams, we argue that sampling a standardized length 
of stream reach and dividing reaches into equidistant 
transects has four important improvements over 
unstandardized conventional timed searches.  First, 
investigators can more accurately quantify search time 
and effort; transects give searchers a chance to catch a 
break between searches to warm themselves, drink water 

Figure 6. Comparison of physical habitat parameters from the New River Drainage between 2014 and 2015 field seasons. Boxes represent 
25th and 75th percentiles and error bars represent 90th percentiles. 



 604   

or have a snack; and at localities where Hellbenders 
are abundant, smaller field teams (i.e., three to four 
technicians) must stop searching frequently so that 
researchers can process animals.  During conventional 
surveys, it becomes difficult to keep track of search 
effort if the number of searchers changes during a 
survey; which frequently occurs as technicians leave 
the survey to process captured Hellbenders.  Second, 
the transect-based approach seems to allow for more 
effective searching of available habitats.  In reaches 
where searches are unconstrained, there is a greater 
potential for inaccurate estimates of search time and 
increased likelihood that technicians lose track of 
exact survey location (i.e., duplicating search effort 
where habitat has already been searched).  Third, the 
transect framework allows for a better understanding 
of Hellbender microhabitat use and has potential 
to help researchers track the movement and habitat 
use of individual Hellbenders by using more precise 
measurement technologies (e.g., PIT tags and sub-
meter GPS units).  For example, the transect framework 
could be used to conduct a randomized experimental 
design using multiple transect numbers (1–15).  Finally, 
this approach greatly facilitates quantifying stream 
physical habitat parameters and monitoring changes 
in Hellbender habitat quality.  Implementation of this 
protocol would therefore enhance management practices 
by further elucidating threats to Hellbender habitat 
and standardizing efforts across the range allowing 
for collaboration in understanding regional changes in 
Hellbender habitat quality through meta-analyses.
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